/* Copyright 2016 The Smudge Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package smudge import ( "math" "sync" ) type pingData struct { sync.RWMutex // The ping data. Initialized with default values by NewPingData() pings []uint32 // The index in pings where the next datapoint will be added pointer int // The last calulcated mean. Recalculated if updated is true lastMean float64 // The last calulcated standard deviation. Recalculated if updated is true lastStddev float64 // The modified flag. Set to true when a datapoint is added updated bool } func newPingData(initialAverage int, historyCount int) pingData { newPings := make([]uint32, historyCount, historyCount) for i := 0; i < historyCount; i++ { newPings[i] = uint32(initialAverage) } return pingData{pings: newPings, updated: true} } func (pd *pingData) add(datapoint uint32) { pd.Lock() pd.pings[pd.pointer] = datapoint // Advance the pointer pd.pointer++ pd.pointer %= len(pd.pings) pd.updated = true pd.Unlock() } // mean returns the simple mean (average) of the collected datapoints. func (pd *pingData) mean() float64 { pd.data() return pd.lastMean } // Returns the mean modified by the requested number of sigmas func (pd *pingData) nSigma(sigmas float64) float64 { mean, stddev := pd.data() return mean + (sigmas * stddev) } // stddev returns the standard deviation of the collected datapoints func (pd *pingData) stddev() float64 { pd.data() return pd.lastStddev } // Returns both mean and standard deviation func (pd *pingData) data() (float64, float64) { if pd.updated { pd.Lock() // Calculate the mean var accumulator float64 for _, d := range pd.pings { accumulator += float64(d) } pd.lastMean = accumulator / float64(len(pd.pings)) // Subtract the mean and square the result; calculcate the mean accumulator = 0.0 // Reusing accumulator. for _, d := range pd.pings { diff := pd.lastMean - float64(d) accumulator += math.Pow(diff, 2.0) } squareDiffMean := accumulator / float64(len(pd.pings)) // Sqrt the square diffs mean and we have our stddev pd.lastStddev = math.Sqrt(squareDiffMean) pd.updated = false pd.Unlock() } return pd.lastMean, pd.lastStddev }