qmk_firmware/keyboards/framework/matrix.c
Daniel Schaefer 22d56c8a0d fl16: Turn capslock LED off when SLEEP# is low
Signed-off-by: Daniel Schaefer <dhs@frame.work>
2023-12-07 17:01:32 +08:00

445 lines
12 KiB
C

// Copyright 2022 Framework Computer
// SPDX-License-Identifier: GPL-2.0-or-later
#include <stdio.h>
#include <stdint.h>
#include "debug.h"
#include "analog.h"
#include "print.h"
#include "quantum.h"
#include "hal_adc.h"
#include "chprintf.h"
#include "matrix.h"
#include "framework.h"
#define adc10ksample_t int
// Mux GPIOs
#define MUX_A GP1
#define MUX_B GP2
#define MUX_C GP3
#define MUX_ENABLE GP4
// Rows to ADC input
#define KSI0 2
#define KSI1 0
#define KSI2 1
#define KSI3 3
// Columns to GPIOs
#define KSO0 GP8
#define KSO1 GP9
#define KSO2 GP10
#define KSO3 GP11
#define KSO4 GP12
#define KSO5 GP13
#define KSO6 GP14
#define KSO7 GP15
#define KSO8 GP21
#define KSO9 GP20
#define KSO10 GP19
#define KSO11 GP18
#define KSO12 GP17
#define KSO13 GP16
#define KSO14 GP23
#define KSO15 GP22
#define ADC_CH2_PIN GP28
// Voltage threshold - anything below that counts as pressed
// 29000 = 2.9V * 10000
const adc10ksample_t ADC_THRESHOLD = (adc10ksample_t) 29000;
bool have_slept = false;
adc10ksample_t to_voltage(adcsample_t sample) {
int voltage = sample * 33000;
return voltage / 1023;
}
void print_as_float(adc10ksample_t sample) {
int digits = sample / 10000;
int decimals = sample % 10000;
uprintf("%d.%02d\n", digits, decimals);
}
/**
* Tell RP2040 ADC controller to initialize a specific GPIO for ADC input
*/
void adc_gpio_init(int gpio) {
assert(gpio >= GP26 && gpio <= GP28);
// Enable pull-up on GPIO input so that we always have high input
// Even on the rows that don't have the external pull-up.
// Otherwise they would be floating.
#define PAL_MODE_ADC_PULLUP (PAL_MODE_INPUT_ANALOG | PAL_RP_PAD_PUE)
palSetLineMode(gpio, PAL_MODE_ADC_PULLUP);
}
/**
* Tell the mux to select a specific column
*
* Splits the positive integer (<=7) into its three component bits.
*/
static void mux_select_row(int row) {
assert(col >= 0 && col <= 7);
// Not in order - need to remap them
// X0 - KSI1
// X1 - KSI2
// X2 - KSI0
// X3 - KSI3
// Only for keyboard, not for num-/grid-pad
// X4 - KSI4
// X5 - KSI5
// X6 - KSI6
// X7 - KSI7
int index = 0;
switch (row) {
case 0:
index = 2;
break;
case 1:
index = 0;
break;
case 2:
index = 1;
break;
default:
index = row;
break;
}
int bits[] = {
(index & 0x1) > 0,
(index & 0x2) > 0,
(index & 0x4) > 0
};
(void)bits;
//uprintf("Mux A: %d, B: %d, C: %d, KSI%d, X%d\n", bits[0], bits[1], bits[2], row, index);
writePin(MUX_A, bits[0]);
writePin(MUX_B, bits[1]);
writePin(MUX_C, bits[2]);
}
/**
* Based on the ADC value, update the matrix for this column
* */
static bool interpret_adc_row(matrix_row_t cur_matrix[], adc10ksample_t voltage, int col, int row, adc10ksample_t threshold) {
bool changed = false;
// By default the voltage is high (3.3V)
// When a key is pressed it causes the voltage to go down.
// But because every key is connected in a matrix, pressing multiple keys
// changes the voltage at every key again. So we can't check for a specific
// voltage but need to have a threshold.
bool key_state = false;
if (voltage < threshold) {
key_state = true;
}
if (key_state) {
uprintf("Col %d - Row %d - State: %d, Voltage: ", col, row, key_state);
print_as_float(voltage);
}
// Don't update matrix on Pico to avoid messing with the debug system
// Can't attach the matrix anyways
//#ifdef PICO_FL16
//(void)key_state;
//return false;
//#endif
matrix_row_t new_row = cur_matrix[row];
if (key_state) {
new_row |= (1 << col);
} else {
new_row &= ~(1 << col);
}
changed = cur_matrix[row] != new_row;
if (key_state) {
uprintf("Keypress at KSO%d, KSI%d - %d.%dV\n", col, row, voltage/10000, voltage%10000);
}
cur_matrix[row] = new_row;
return changed;
}
/**
* Drive the GPIO for a column low or high.
*/
void drive_col(int col, bool high) {
assert(col >= 0 && col <= MATRIX_COLS);
int gpio = 0;
switch (col) {
case 0:
gpio = GP8;
break;
case 1:
gpio = GP9;
break;
case 2:
gpio = GP10;
break;
case 3:
gpio = GP11;
break;
case 4:
gpio = GP12;
break;
case 5:
gpio = GP13;
break;
case 6:
gpio = GP14;
break;
case 7:
gpio = GP15;
break;
case 8:
gpio = GP21;
break;
case 9:
gpio = GP20;
break;
case 10:
gpio = GP19;
break;
case 11:
gpio = GP18;
break;
case 12:
gpio = GP17;
break;
case 13:
gpio = GP16;
break;
case 14:
gpio = GP23;
break;
case 15:
gpio = GP22;
break;
default:
// Not supposed to happen
assert(false);
return;
}
// Don't drive columns on pico because we're using these GPIOs for other purposes
//#ifdef PICO_FL16
// (void)gpio;
// return;
//#endif
//uprintf("Driving col %s %d, GP%d\n", high ? "HIGH" : "LOW ", col, gpio);
if (high) {
// TODO: Could set up the pins with `setPinOutputOpenDrain` instead
writePinHigh(gpio);
} else {
writePinLow(gpio);
}
}
/**
* Read a value from the ADC and print some debugging details
*/
static adc10ksample_t read_adc(void) {
// Can't use analogReadPin because it gets rid of the internal pullup on
// this pin, that we configure in matrix_init_custom
// uint16_t val = analogReadPin(ADC_CH2_PIN);
uint16_t val = adc_read(pinToMux(ADC_CH2_PIN));
return to_voltage(val);
}
/**
* Handle the host going to sleep or the keyboard being idle
* If the host is asleep the keyboard should reduce the scan rate and turn backlight off.
*
* If the host is awake but the keyboard is idle it should enter a low-power state
*/
bool handle_idle(void) {
bool asleep = !readPin(SLEEP_GPIO);
static uint8_t prev_asleep = -1;
if (prev_asleep != asleep) {
prev_asleep = asleep;
}
if (asleep) {
led_suspend();
} else {
led_wakeup();
}
#ifdef RGB_MATRIX_ENABLE
if (rgb_matrix_get_suspend_state() != asleep) {
if (asleep) {
writePinLow(IS31FL3743A_ENABLE_GPIO);
} else {
writePinHigh(IS31FL3743A_ENABLE_GPIO);
}
rgb_matrix_set_suspend_state(asleep);
}
#endif
#ifdef BACKLIGHT_ENABLE
if (is_backlight_enabled() != !asleep) {
if (asleep) {
backlight_disable();
have_slept = true;
} else if (have_slept) {
// For some reason this will not set the proper value right after
// turning on. But the quantum code will have set it properly
// already, so there's no need to run this. Unless we actually wake
// up from sleep.
backlight_enable_old_level();
}
}
#endif
// TODO: Try this again later, but for now USB suspend should be fine
// This seems to cause issues with waking up the host by keypresses
// static int host_sleep = 0;
// /* reduce the scan speed to 10Hz */
// if (prev_asleep != asleep) {
// prev_asleep = asleep;
// if (!asleep) {
// suspend_power_down_quantum();
// } else {
// suspend_wakeup_init_quantum();
// }
// }
// if (!asleep) {
// if (timer_elapsed32(host_sleep) < 100) {
// port_wait_for_interrupt();
// return true;
// } else {
// host_sleep = timer_read32();
// }
// }
return false;
}
/**
* Overriding behavior of matrix_scan from quantum/matrix.c
*/
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
bool changed = false;
adc10ksample_t voltages[MATRIX_ROWS][MATRIX_COLS] = {};
if (handle_idle()) {
return false;
}
//wait_us(500 * 1000);
// Drive all high to deselect them
for (int col = 0; col < MATRIX_COLS; col++) {
drive_col(col, true);
}
// Go through every matrix column (KSO) and drive them low individually
// Then go through every matrix row (KSI), select it with the mux and check their ADC value
for (int col = 0; col < MATRIX_COLS; col++) {
// Drive column low so we can measure the resistors on each row in this column
drive_col(col, false);
for (int row = 0; row < MATRIX_ROWS; row++) {
// Debug for keyboard. Row 5 and 6 don't seem to work
//print("\n");
// Read ADC for this row
mux_select_row(row);
// Wait for column select to settle and propagate to ADC
//wait_us(500 * 1000);
voltages[row][col] = read_adc();
}
// Drive column high again
drive_col(col, true);
}
for (int row = 0; row < MATRIX_ROWS; row++) {
uint8_t pressed_in_row = 0;
for (int col = 0; col < MATRIX_COLS; col++) {
if (voltages[row][col] < ADC_THRESHOLD) {
pressed_in_row += 1;
}
}
for (int col = 0; col < MATRIX_COLS; col++) {
adc10ksample_t threshold = ADC_THRESHOLD;
switch (pressed_in_row) {
case 0:
case 1:
threshold = 10000; // 1.0V
break;
case 2:
threshold = 20000; // 2.0V
break;
case 3:
threshold = 25000; // 2.5V
break;
default:
threshold = ADC_THRESHOLD;
break;
}
// Interpret ADC value as rows
changed |= interpret_adc_row(current_matrix, voltages[row][col], col, row, threshold);
}
}
return changed;
}
//bool process_record_user(uint16_t keycode, keyrecord_t *record) {
// // If console is enabled, it will print the matrix position and status of each key pressed
//#ifdef CONSOLE_ENABLE
// uprintf("KL: kc: 0x%04X, col: %2u, row: %2u, pressed: %u, time: %5u, int: %u, count: %u\n", keycode, record->event.key.col, record->event.key.row, record->event.pressed, record->event.time, record->tap.interrupted, record->tap.count);
//#endif
// return true;
//}
/**
* Enable the ADC MUX
*
* TODO: Do we need a de-init? Probably not.
*/
static void adc_mux_init(void) {
setPinOutput(MUX_ENABLE);
writePinLow(MUX_ENABLE);
setPinOutput(MUX_A);
setPinOutput(MUX_B);
setPinOutput(MUX_C);
}
/**
* Overriding behavior of matrix_init from quantum/matrix.c
*/
void matrix_init_custom(void) {
adc_mux_init();
adc_gpio_init(ADC_CH2_PIN);
// KS0 - KSO7 for Keyboard and Numpad
setPinOutput(KSO0);
setPinOutput(KSO1);
setPinOutput(KSO2);
setPinOutput(KSO3);
setPinOutput(KSO4);
setPinOutput(KSO5);
setPinOutput(KSO6);
setPinOutput(KSO7);
// KS08 - KS015 for Keyboard only
setPinOutput(KSO8);
setPinOutput(KSO9);
setPinOutput(KSO10);
setPinOutput(KSO11);
setPinOutput(KSO12);
setPinOutput(KSO13);
setPinOutput(KSO14);
setPinOutput(KSO15);
// Set unused pins to input to avoid interfering. They're hooked up to rows 5 and 6
setPinInput(GP6);
setPinInput(GP7);
}