163 lines
5.4 KiB
C
Executable File
163 lines
5.4 KiB
C
Executable File
/* Copyright 2023 @ Keychron (https://www.keychron.com)
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "quantum.h"
|
|
|
|
// Mask out handedness diode to prevent it
|
|
// from keeping the keyboard awake
|
|
// - just mirroring `KC_NO` in the `LAYOUT`
|
|
// macro to keep it simple
|
|
const matrix_row_t matrix_mask[] = {
|
|
0b011111111,
|
|
0b011111111,
|
|
0b011111111,
|
|
0b001111111,
|
|
0b011111101,
|
|
0b001011111,
|
|
0b111111111,
|
|
0b101111111,
|
|
0b111111111,
|
|
0b110111111,
|
|
0b010111111,
|
|
0b111011110,
|
|
};
|
|
|
|
#ifdef DIP_SWITCH_ENABLE
|
|
bool dip_switch_update_kb(uint8_t index, bool active) {
|
|
if (!dip_switch_update_user(index, active)) {
|
|
return false;
|
|
}
|
|
if (index == 0) {
|
|
default_layer_set(1UL << (active ? 0 : 2));
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#if defined(RGB_MATRIX_ENABLE) && defined(CAPS_LOCK_LED_INDEX)
|
|
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
|
|
if (!process_record_user(keycode, record)) {
|
|
return false;
|
|
}
|
|
switch (keycode) {
|
|
case RGB_TOG:
|
|
if (record->event.pressed) {
|
|
switch (rgb_matrix_get_flags()) {
|
|
case LED_FLAG_ALL: {
|
|
rgb_matrix_set_flags(LED_FLAG_NONE);
|
|
rgb_matrix_set_color_all(0, 0, 0);
|
|
} break;
|
|
default: {
|
|
rgb_matrix_set_flags(LED_FLAG_ALL);
|
|
} break;
|
|
}
|
|
}
|
|
if (!rgb_matrix_is_enabled()) {
|
|
rgb_matrix_set_flags(LED_FLAG_ALL);
|
|
rgb_matrix_enable();
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool rgb_matrix_indicators_advanced_kb(uint8_t led_min, uint8_t led_max) {
|
|
if (!rgb_matrix_indicators_advanced_user(led_min, led_max)) {
|
|
return false;
|
|
}
|
|
// RGB_MATRIX_INDICATOR_SET_COLOR(index, red, green, blue);
|
|
# if defined(CAPS_LOCK_LED_INDEX)
|
|
if (host_keyboard_led_state().caps_lock) {
|
|
RGB_MATRIX_INDICATOR_SET_COLOR(CAPS_LOCK_LED_INDEX, 255, 255, 255);
|
|
} else {
|
|
if (!rgb_matrix_get_flags()) {
|
|
RGB_MATRIX_INDICATOR_SET_COLOR(CAPS_LOCK_LED_INDEX, 0, 0, 0);
|
|
}
|
|
}
|
|
# endif // CAPS_LOCK_LED_INDEX
|
|
# if defined(NUM_LOCK_LED_INDEX)
|
|
if (host_keyboard_led_state().num_lock) {
|
|
RGB_MATRIX_INDICATOR_SET_COLOR(NUM_LOCK_LED_INDEX, 255, 255, 255);
|
|
} else {
|
|
if (!rgb_matrix_get_flags()) {
|
|
RGB_MATRIX_INDICATOR_SET_COLOR(NUM_LOCK_LED_INDEX, 0, 0, 0);
|
|
}
|
|
}
|
|
# endif // NUM_LOCK_LED_INDEX
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#define ADC_BUFFER_DEPTH 1
|
|
#define ADC_NUM_CHANNELS 1
|
|
#define ADC_SAMPLING_RATE ADC_SMPR_SMP_12P5
|
|
#define ADC_RESOLUTION ADC_CFGR_RES_10BITS
|
|
|
|
static int16_t analogReadPin_my(pin_t pin) {
|
|
ADCConfig adcCfg = {};
|
|
adcsample_t sampleBuffer[ADC_NUM_CHANNELS * ADC_BUFFER_DEPTH];
|
|
ADCDriver *targetDriver = &ADCD1;
|
|
ADCConversionGroup adcConversionGroup = {
|
|
.circular = FALSE,
|
|
.num_channels = (uint16_t)(ADC_NUM_CHANNELS),
|
|
.cfgr = ADC_RESOLUTION,
|
|
};
|
|
|
|
palSetLineMode(pin, PAL_MODE_INPUT_ANALOG);
|
|
switch (pin) {
|
|
case B0:
|
|
adcConversionGroup.smpr[2] = ADC_SMPR2_SMP_AN15(ADC_SAMPLING_RATE);
|
|
adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(ADC_CHANNEL_IN15);
|
|
sampleBuffer[0] = 0;
|
|
break;
|
|
case B1:
|
|
adcConversionGroup.smpr[2] = ADC_SMPR2_SMP_AN16(ADC_SAMPLING_RATE);
|
|
adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(ADC_CHANNEL_IN16);
|
|
sampleBuffer[0] = 0;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
adcStart(targetDriver, &adcCfg);
|
|
if (adcConvert(targetDriver, &adcConversionGroup, &sampleBuffer[0], ADC_BUFFER_DEPTH) != MSG_OK) {
|
|
return 0;
|
|
}
|
|
|
|
return *sampleBuffer;
|
|
}
|
|
|
|
void keyboard_post_init_kb(void) {
|
|
// 1. The pin A5/B5 of the USB C interface in the left hand is connected to the pin A0 of MCU,
|
|
// A0 will be set to output and write high when keyboard initial.
|
|
// 2. The same pin in the right hand is connected to the pin B0 and B1 of MCU respectively,
|
|
// and the ADC function of B0 and B1 will be enabled when keyboard initial.
|
|
// 3. because the serial usart RXD and TXD is multiplexed on USB's D+ and D- in the right hand.
|
|
// So detect the voltage on the pin A5/B5 of the USB C interface by ADC,
|
|
// and disable USB connectivity when the ADC value exceeds 1000,
|
|
// to avoid affecting the serial usart communication between the left hand and the right hand.
|
|
if (is_keyboard_left()) {
|
|
setPinOutput(A0);
|
|
writePinHigh(A0);
|
|
} else {
|
|
if ((analogReadPin_my(B0) > 1000) || (analogReadPin_my(B1) > 1000)) {
|
|
setPinInput(A11);
|
|
setPinInput(A12);
|
|
}
|
|
}
|
|
|
|
keyboard_post_init_user();
|
|
}
|